
1

User-Friendly Access Control for Public Network Ports

Guido Appenzeller Mema Roussopoulos Mary Baker�
appenz,mema,mgbaker � @cs.stanford.edu

Department of Computer Science, Stanford University
http://mosquitonet.stanford.edu

Abstract—We are facing a growing user demand for ubiquitous Internet
access. As a result, network ports and wireless LANs are becoming common
in public spaces inside buildings such as lounges, conference rooms and lec-
ture halls. This introduces the problem of protecting networks accessible
through these public ports from unauthorized use. In this paper, we study
the problem of access control through public network ports. We view this
problem as a special case of the more general problem of access control for
a service on a network. We present an access control model on which we
base our solution. This model has three components: authentication, autho-
rization, and access verification. We describe the design and implementa-
tion of a system that allows secure network access through public network
ports and wireless LANs. Our design requires no special hardware or cus-
tom client software, resulting in minimal deployment cost and maintenance
overhead. Our system has a user-friendly, web-based interface, offers good
security, and scales to a campus-sized community.

I. INTRODUCTION

The Stanford Computer Science Department is housed in a
building that includes Ethernet ports in every office as well as
in public spaces such as lounges, conference rooms, and lob-
bies. These public ports are connected to the department net-
work. Until recently, the public ports had not been activated
because of concerns that unauthorized users could gain access
to the departmental network. Once inside the network they can
cause damage by using it to launch attacks on computers in the
department and use services and software that restrict access ac-
cording to IP address. The department would additionally be
exposed to potential liabilities for activities against other sys-
tems on the Internet (e.g. spamming, hacking) originating from
these ports.

Current solutions to the problem of secure network access
through public ports have several drawbacks: they are expen-
sive; they are not user-friendly; they require constant mainte-
nance; or they require special hardware or custom client soft-
ware. Our goal is to provide a system that is low-cost, user-
friendly, and scalable, and that requires little effort to maintain
and no special hardware or custom client software.

We have built a system called the Secure Public Internet
Access Handler (SPINACH). The prototype of SPINACH, de-
scribed in [15], was low-cost and low-maintenance. While it
did not require custom client software, regular users who did
not own Kerberos-aware telnet clients had to request administra-
tive assistance each time they used the system. Also, the telnet-
based interface used was not user-friendly. We have redesigned
SPINACH so that it achieves all of our goals. This makes it a
viable solution for use by a variety of public organizations, such
as public schools, libraries, and universities, where reasonably
secure network access is desired, but keeping cost and mainte-
nance effort at a minimum is essential.

The SPINACH system establishes a “prisonwall” which con-
trols the flow of traffic between hosts connected to the public
ports and hosts on the departmental network. Unlike a firewall,

which protects machines inside a particular network from ma-
licious users outside the network, the prisonwall protects hosts
outside one portion of a network by refusing to forward packets
that come from unauthorized hosts within that network. [15]

In this paper, we describe the design and implementation of
the second version of the SPINACH system. In Section II, we
discuss the overall design principles that guided us in our study
of secure public port access control and the model on which we
base our solution. This model has three components: authen-
tication, authorization, and access verification. In Section III,
we discuss the design features that are necessary to make the
system as usable and widely applicable as possible. In Section
IV, we describe the architecture of our system, and show how it
maps to our model. In Section V, we evaluate the system using
our design goals. In Section VI, we describe our preliminary
experience with the system. In Section VII, we describe related
work. Finally, in Section VIII, we describe future work, and in
Section IX we state our conclusions.

II. A MODEL FOR PERFORMING NETWORK SERVICE

ACCESS CONTROL

Network service access control is the problem of determin-
ing whether a user should be allowed to access a particular ser-
vice within a network. The problem of secure network access
through public ports is a special case of network service access
control, where the service offered is an open path to a subnet or
the Internet.

We base our solution to the public port access problem on
a model composed of three modules. This model, pictured in
Figure 1, is inspired by the Kerberos [16] security model.

Client

Server

Authentication
Server

Authorization
Server

Password

Authentication

Credentials

Access

Ticket

S
e

rvice

1

2

3

4

Fig. 1. Our access model: We separate the access control process into three
steps: authentication, authorization and access verification. Each step may
be handled by a separate server on the network.

A. Modules of the Access Control Mechanism
� Authentication. Authentication is the process of identifying
a user by associating him with a known and trusted organization.
In the real world, this could be done by showing an identifica-
tion card that shows the user’s name and that he is resident of

a certain state. On a computer, the user might be asked to en-
ter a username and password. If these appear in the password
database, the computer will assume the user is the person de-
scribed in the database.� Authorization. Given the identity of a user, authorization is
the process of deciding whether the user can have access to a
particular service. Often the policy is to give access to all suc-
cessfully identified users, but in many cases additional mecha-
nisms are used to differentiate among users requesting a partic-
ular service.� Access Verification. The access verification module enforces
the decision made by the authorization module. Unless it re-
ceives proof that a user has been authorized to use a service, the
access verification module denies access to the service. Note
that the access verification module does not need to know the
user’s identity to perform its function.

An important characteristic of our model is the clean separa-
tion of authentication, authorization, and access verification. To
make the separation of these three modules more clear, consider
the following real-world example. A college student decides to
meet her friends at a bar. The bar’s bouncer requests that the
student hand him her driver’s license. If the picture on the li-
cense matches the student’s face, the bouncer is satisfied. This
is authentication. The bouncer then checks the student’s date of
birth. If the student is at least twenty-one years old, the bouncer
places a band around her wrist. This is authorization. The stu-
dent joins her friends and orders a drink. The bartender checks
that she is wearing a valid wristband, and hands her a drink. He
does not care what her name is nor what her age is; he only cares
that she has a wristband. This is access verification.

B. Module Requirements

In many systems these three steps are performed in one mod-
ule. In the example above, the bouncer performed both the au-
thentication and the authorization of the student. We believe
that in very large systems, however, it is beneficial to keep these
three steps separate for a number of reasons:

� Differing Levels of Security. The level of security required
differs significantly from step to step. Compromising the ac-
cess verification module gives an adversary access to the ser-
vice. However an intrusion into the authentication module is
more severe as an adversary can now impersonate the user for
this as well as any other service. In a network, the authentica-
tion module would therefore be protected behind a firewall with
data entry capabilities restricted to a small group of people. De-
pending on the service, the authorization and access verification
modules may not need as high a level of security, and should
not be required to adhere to the same policy as the authentica-
tion module. Also, compromising one module should not put
the other modules at risk.� Modules Controlled by Different Parties. We want to allow
different parties to have control over each of the modules. Au-
thentication might be assigned to a large central authority such
as a company or a university. The authorization policy for a ser-
vice might be set by the entity or department maintaining that
service. Access verification needs to be performed on every ma-
chine rendering the service.

� Flexibility and Scalability. Modular design allows us to re-
configure one module without affecting the others. In our de-
sign, we take advantage of the existing campus Kerberos infras-
tructure, but could easily replace it with a different authentica-
tion scheme. Also, several instances of one module can exist and
be used in parallel. For example a single authorization module
can be configured to accept authentication credentials from sev-
eral authentication modules, both in local and remote networks.
This allows us to scale access control for services across multi-
ple administrative domains.

III. USABILITY ISSUES

We want to make the SPINACH service as “usable” as pos-
sible. That is, we want to enable a variety of organizations
such as public schools, libraries, and universities to offer and
use the SPINACH service. To do so, we must achieve four
goals: place minimal software and hardware requirements on
the client, make the service as user-friendly as possible, require
a minimal amount of overall system administration, and make
the service scalable. We address each of these goals below.

Minimal client requirements. The SPINACH service should
work with any common operating system without additional
software. Among the most common operating systems are Win-
dows 95, Mac OS and Unix-flavored systems. SPINACH should
easily support all of these operating systems. Therefore, the only
software we require of the client is a web browser that supports
the Secure Socket Layer (SSL) [8]. This requirement is minimal
since today’s popular web browsers support SSL. We recom-
mend that the client support Dynamic Host Configuration Pro-
tocol (DHCP) software [7]. This is solely for user convenience,
so that users need not configure IP addresses manually. On the
hardware side, we want to support as many network interfaces
as possible. Currently, we support any interface that uses IP and
has the notion of a hardware address (e.g., Ethernet, Wireless
Ethernet).

Minimal network hardware requirements. The SPINACH
service should not require any special hardware in the network.
Current solutions require special brands of VLAN switches that
enable and disable ports as hosts are authenticated. Many ex-
isting Ethernet installations do not use special VLAN switches,
and retrofitting a building or college campus to use such VLAN
switches would be time-consuming and costly. Furthermore,
imposing special hardware requirements precludes using a net-
work access service on other kinds of networks such as wireless
LANs and WANs. Currently, SPINACH does not require any
special network hardware and runs on both Ethernet and wire-
less LANs such as Lucent’s WaveLan [3].

User-friendly interface. Users should have an appealing,
easy-to-use interface that offers comprehensive instructions for
each step of the SPINACH process. To achieve this goal, we
have developed a web-based interface to the SPINACH service.

Minimal administrative effort. The SPINACH service
should require minimal maintenance effort from system admin-
istrators. Changes in user software platforms should have no
effect on maintenance. This means that handing out special soft-
ware to clients is not an option, because maintaining up-to-date
versions of the software for every possible client platform is ex-
tremely tedious. The goal of minimal administrative effort goes

hand in hand with the goal of minimal client requirements.
Scalability. The SPINACH service should support a large

number of users without degraded performance or substantial
increase in administrative effort. Currently more than 10,000
people on the Stanford campus can use the SPINACH system.
SPINACH can easily be scaled up to serve users belonging to
remote organizations. Plans are currently under consideration
to give access to users who have been successfully authenticated
by authentication modules outside Stanford.

IV. SYSTEM ARCHITECTURE

The overall architecture of the SPINACH system is displayed
in Figure 2. We have set up the SPINACH service on both the
public Ethernet ports and on a Lucent WaveLan [3] network in-
stalled in the Computer Science Building. Note that Figure 2
shows only the public Ethernet ports. The WaveLan network
and all of the public Ethernet ports are logically placed on one
subnet labeled as the public subnet in Figure 2.

This public subnet is connected to the departmental net-
work (and thus the Internet) through the SPINACH router. The
SPINACH router thus has three interfaces: an Ethernet interface
on the departmental network, and an Ethernet and WaveLan in-
terface on the public subnet.

The main purpose of the SPINACH service is twofold: 1) to
protect hosts outside the public subnet from unauthorized hosts
within the public subnet, and 2) to provide an access control
mechanism that allows users running hosts on the public subnet
to authorize themselves and gain full network access.

Public Subnet

Public Network Ports and WaveLan

Campus Backbone

Departmental Network

Department Router

SPINACH Router

Departmental Network
Campus Network

DNS Server

Campus
Kerberos Server

WebLogin

Internet

Info Web Server

Mobile
 host

Fig. 2. SPINACH Network Layout

To protect hosts outside the public subnet, the SPINACH
router establishes a “prisonwall.” This prisonwall controls the
flow of traffic between hosts inside the public subnet and hosts
outside the public subnet. Unlike a firewall, which protects ma-
chines inside a particular network from malicious users outside
the network, the prisonwall protects hosts outside one portion of

a network by refusing to forward packets that come from unau-
thorized hosts within. [15]

The prisonwall gives limited network access to all hosts, by
forwarding all packets destined for the WebLogin and depart-
mental DNS servers (pictured in Figure 2), regardless of whether
these packets come from authorized hosts or unauthorized hosts.
This is because these servers are needed in the access control
procedure. The prisonwall gives full network access only to
hosts used by persons who have successfully completed the ac-
cess control procedure.

We use five pieces of software to provide a mechanism that al-
lows users to gain full network access through the public ports.
These are: the WebLogin Authentication Server, the SPINACH
Authorization Server, the Access Verification Server, the User-
Interface Web Server, and the DHCP Server. The WebLogin
server runs on a machine connected directly to the campus back-
bone (see Figure 2). The other four pieces of software run on the
SPINACH router. These are pictured in Figure 3. We describe
each of the pieces of software below.

SPINACH Router

User Interface
Web-Server

CGI
Scripts

SPINACH
Authorization

Server

Prison-
wall

SSL Encrypt.

Request
Handler

ARP

DHCP
Server Mobile

Host

Inter-
 net

Access Verification
Server

Fig. 3. SPINACH Server Architecture

A. WebLogin Authentication Server

The SPINACH service uses WebLogin to perform user au-
thentication. WebLogin is a service implemented by the Stan-
ford Distributed Computing Consultants [17]. This service of-
fers a web-based interface to the campus Kerberos authenti-
cation service. Any server that wants to use WebLogin for
authentication redirects the browser of the user to the site
weblogin.stanford.edu. The user enters his Kerberos
login name and password into a form provided, and the We-
bLogin server uses this information to obtain a Kerberos ticket
encrypted using the secret DES key of the server from which
the user was directed. This ticket is encapsulated into a web-
cookie and passed back to the user’s browser. The user is then
redirected back to the server. The user’s browser passes the
cookie to the server, which then verifies the encapsulated Ker-
beros ticket. All transfers are encrypted using the Secure Socket
Layer (SSL) [8], to protect the transmission of the encapsulated
Kerberos tickets.

WebLogin allows us to take advantage of the existing campus
Kerberos infrastructure, without requiring users to run Kerberos
client software on their laptops. This is very helpful, because

Kerberos software is difficult to install and use. We estimate
that Kerberos clients are installed on less than three percent of
the laptops in the Stanford Computer Science Department. As a
result, the inclusion of WebLogin in our design greatly enhances
the usability of the SPINACH service.

Another important feature of the SPINACH design is that
the user and the organization that is running the authentication
database both do not have to trust the SPINACH Administra-
tors. If SPINACH is set up by an untrusted party (e.g., a student
residence), this party cannot read the user’s authentication infor-
mation.

We could easily plug a different authentication scheme into
our design, should the need arise. This is possible because of the
clean separation of authentication from authorization and access
verification. We considered three other alternatives:

� One-time Password Schemes: Setting up a one-time password
scheme such as S/KEY [9] for the entire campus community
requires assigning passwords to each potential user. This would
have involved too much administrative effort on our part.� Certified Public Keys: Using public keys that have been cer-
tified by some trusted authority is an excellent authentication
option. Currently, most users do not have public keys so manag-
ing keys for all users would have been necessary. Additionally,
the support for personal public keys in current web browsers is
still new, and users have little experience in using public keys.� Tamper-proof Hardware: This option involves storing the
user’s password or key on portable and tamper-proof hardware
such as smart cards and Java rings. The user’s password (or
key) never leaves the hardware and cannot be extracted by nor-
mal means. Although this technology is highly secure, it is also
not yet commonly used.

Plans are currently under consideration to make the WebLo-
gin code publicly available. This will enable the WebLogin ser-
vice and consequently the SPINACH service to be used at other
organizations. Until this happens, organizations wanting to port
SPINACH to their systems will need to implement a web-based
mechanism, similar to WebLogin, that uses the existing authen-
tication infrastructure to identify users. Once this has been done,
SPINACH can be ported easily.

B. SPINACH Authorization Server

The SPINACH Authorization Server acts as the driver of the
SPINACH service. It generates the web-pages displayed by
the Web Server, performs authorization, and invokes the Access
Verification Server.

Currently, no specific authorization policy has been set. That
is, the SPINACH server currently grants full network access for
two hours to all successfully authenticated users. This includes
all Stanford affiliates that are registered in the Stanford Kerberos
database. No policy has been set because our building admin-
istrators have not yet decided to which Stanford affiliates the
SPINACH service should be accessible. When they do, we will
need a simple way of specifying high-level rules that authorize
users according to certain criteria. For example, a rule might au-
thorize “all graduate students and faculty in the Stanford Com-
puter Science Department” or “all people who have an office in
the Computer Science Building.” Authorization schemes such as
access control matrices are widely discussed in [6]. We extend

this discussion in the Future Work Section.
The SPINACH server maintains a list of all current users and

directs the Access Verification Server to terminate network ac-
cess for hosts when their period of authorization expires. It also
maintains an audit trail so that authorized users are held ac-
countable for any malicious traffic they generate against hosts
outside the public subnet. Thus, the department network is
guarded from both malicious authorized and malicious unautho-
rized users.

C. Access Verification Server

The Access Verification Server contains two components: the
prisonwall module and the ARP module. When invoked by the
SPINACH server, the prisonwall module grants full network ac-
cess to a host, by forwarding all packets from that host out to
the departmental network, as described earlier. The ARP mod-
ule monitors the contents of the ARP cache, and ensures that
no packet leaving the public subnet has a source hardware and
IP address pair that is inconsistent with the ARP cache. Al-
though this guards against IP address spoofing, this does not
guard against hardware address spoofing. We address this prob-
lem in Section V-C.

In many current systems, authorization and access verifica-
tion are performed within the same module. We believe this is
not a good idea. Authorization needs to be performed only once
for each service type, whereas access verification must be per-
formed on every attempt to access an instance of a service type.

Consider a user who wants to print a document. The user will
want to use the print service. There may be several printers of-
fering the print service, and each printer will make its service
available to the user if it receives some “proof of authorization
to print,” often in the form of a ticket. The user needs to obtain
authorization only once to print, and may present the same ticket
to any number of printers, until the ticket expires. Since autho-
rization is needed just once, there is no need to put this function-
ality in every printer. This would complicate the printer server
implementation. Second, if the access verification module is
compromised, then the worst that happens is that the service is
used by an unauthorized user until the ticket expires; the autho-
rization module is never compromised. Finally, separating the
functionality of the authorization and access verification mod-
ules allows a change in authorization policy to be made without
affecting the access verification module.

Note that in our implementation, the SPINACH Authoriza-
tion Server and the Access Verification Server are both running
on the SPINACH router. If a higher degree of security is needed,
we can easily run the SPINACH Authorization Server on a dif-
ferent machine located behind a firewall. This would require the
SPINACH Authorization Server to authenticate itself (possibly
through SSL) to the Access Verification Server.

D. SPINACH User Interface

The user interface of SPINACH is a modified Apache Web
Server, located at http://spinach.stanford.edu. It
displays the initial welcome screen to the user and guides users
through the whole access control process. When a user connects
to the web server, he is redirected to the WebLogin server. The
WebLogin server authenticates users and redirects them back to

the web server. The web server decodes the cookie generated by
the WebLogin server and runs a CGI script that passes authenti-
cation information to the SPINACH Authorization Server.

The web pages that the web server displays are either locally
stored or generated by the SPINACH server. The web server
also takes care of the encryption of the communication between
the user and the SPINACH system. It uses the Secure Socket
Layer for communication with the user’s browser, and has a
module that allows it to decrypt and decode cookies received
from the WebLogin server.

E. DHCP Server

We use a standard Dynamic Host Configuration Protocol
(DHCP) server [7] that hands out network configuration infor-
mation in the form of a lease to hosts on the public subnet.
Hosts use this information to configure themselves automati-
cally. Hosts without DHCP support must be manually config-
ured by users. DHCP client software is available on a wide vari-
ety of platforms, including the widely-used Windows 95 operat-
ing system, and many Unix-flavored operating systems. There-
fore, we believe it is reasonable to assume that most users have
hosts with support for DHCP.

F. System Usage Scenario

In a normal usage scenario, the user plugs his laptop into
a public port. The laptop automatically obtains a DHCP
lease, and configures itself accordingly. The user sets his
browser to point to the SPINACH Web Server located at
http://spinach.stanford.edu (This step might be-
come automatic in the near future. A solution involving IP
redirection is currently being developed). The user’s browser
is redirected to the WebLogin Authentication Server. The au-
thentication information the user types into the WebLogin form
is sent to WebLogin using SSL. The user can verify the identity
of the WebLogin Server by using his browser to check its cer-
tificate. When the Weblogin Server has finished authenticating
the user, it redirects him back to the SPINACH Web Server’s
page. At this point, the SPINACH Web Server grants access to a
CGI script that connects to the SPINACH Authorization Server.
The SPINACH Authorization Server verifies that the user is a
Stanford affiliate by checking the authentication information it
receives from the CGI script. It then invokes the Access Verifi-
cation Module which manipulates the prisonwall so that packets
from the newly authorized host flow through. A log entry is
generated so that it may be used for auditing purposes should
the newly authorized host misbehave.

V. SYSTEM EVALUATION

We evaluate SPINACH using three criteria: ease of use
from the user’s perspective, scalability, and security robustness.
SPINACH is ideal for novice users, and scales to a campus-sized
community. Although SPINACH is not as secure as some other
systems (see Section VII), it provides a good measure of security
for the cost and administrative effort required to keep it running.

A. Usability and Administration

Currently, SPINACH is running and serves all public ports
in the Stanford Computer Science Building. Users report that

the SPINACH service is extremely easy to use. All users who
have an entry in the campus Kerberos database have successfully
been able to obtain network access.

Figure 4 shows an example of what the user actu-
ally sees on his screen when using SPINACH. The user
first points his browser to the SPINACH Web Server at
http://spinach.stanford.edu and sees the welcome
screen (Figure 4a). The user selects the link entitled “Stanford
Faculty, Staff or Students.” This downloads the WebLogin page
(Figure 4b). The user enters his login name and password. A
web page appears indicating that the user has been authenticated
(Figure 4c). The user clicks on the link provided that will send
his browser back to the SPINACH service page. A final web
page appears, indicating that the user has been granted full net-
work access (Figure 4d). The user is now free to web surf, telnet
into a remote machine, or perform any other network activity.

The administrative effort for SPINACH is minimal. Since
all students, faculty and staff are registered in the campus Ker-
beros database when they first join Stanford, new users do not
need to contact the SPINACH administrators before using the
SPINACH service.

B. Scalability

In our design, there are two potential bottlenecks: WebLogin
and the SPINACH router. We address both below, and show
that SPINACH is scalable to a campus-sized community of over
10,000 users.

We depend on WebLogin for authentication. WebLogin is
currently being used by the entire Stanford community includ-
ing students, faculty, and staff. In total, WebLogin serves over
10,000 users. [2] From this, we can safely conclude that the
authentication component of our design is not a bottleneck.

The SPINACH router by itself may not be able to support
packets originating from 10,000 authorized hosts. However, this
problem is solved by adding more machines to act as SPINACH
routers. The public subnet can be partitioned into groups. Each
router would be in charge of one group. This would make the
routing task manageable. Recall that our modular design allows
several instances of a module to coexist. Therefore, running
several Authorization and Access Verification Servers in parallel
can be done easily.

C. Security

The security of an access control service such as SPINACH
does not depend solely on its ability to prevent access by unau-
thorized users. Additional issues are whether a malicious user
can do damage to other users, and most importantly the severity
of the consequences of a break-in into the SPINACH system.

Intrusion Tolerance. As SPINACH is publicly accessible
and potentially can be operated by unreliable parties, it is im-
portant to consider the consequences of an adversary breaking
into the SPINACH router. A user breaking into the SPINACH
router is not able to steal authentication information about other
users. Authentication is done directly with WebLogin and all
traffic is encrypted using SSL. The only major damage caused
by a break-in is compromising the DES key of the SPINACH
server which then has to be reissued.

Figure 4: (a)-(d), User’s view of SPINACH

Protection from other Users. SPINACH does not protect
users from other hosts running on the public subnet. Any person
connected to the public subnet can monitor other users’ traffic or
try to hack their systems. SPINACH, however, does track hosts
once they are given network access so that they may be held ac-
countable for any malicious traffic they generate against hosts
outside the public subnet. An adversary that is able to spoof
hardware addresses and thus impersonate another user (see be-

low) could however cause damage to the user by performing
malicious activities in his name.

Fake SPINACH Routers. A computer that is connected to
the public network could pose as a fake SPINACH router, give
out DHCP leases, and accept authentication cookies. It could
then use these cookies to gain access to the Internet. The user
can detect this attack, since the fake SPINACH Router lacks the
certificate of SPINACH and either cannot use SSL for the con-
nection or has to use a different hostname. In reality not all
users pay attention to the site or whether encryption is used, and
hardly any users verify the certificate of a site. For this reason
we are considering additional security mechanisms (e.g. listen-
ing to DHCP offers on the network). Authentication cookies ob-
tained by a fake SPINACH server are only valid for a short time
and cannot be used to impersonate the user at other services.

Denial of Service Attacks. SPINACH is vulnerable to denial
of service attacks launched on both the DHCP and SPINACH
Web servers running on the SPINACH router. A possible solu-
tion is for the router to do additional IP-level filtering of DHCP
and web requests from sources generating a high number of
requests. The same denial of service attack can be launched
against WebLogin or the department DNS server.

Hardware Address Spoofing. One way an adversary can try
to get access to the network is by spoofing IP addresses of hosts
that have been given access. Simple replication of the IP ad-
dress is not enough as SPINACH verifies the hardware address
of the sender. If the host however is additionally able to spoof
the hardware address it can gain unauthorized access.

One way to avoid hardware spoofing attacks is to use strong
authentication at the level at which the filtering is done. As we
filter at the IP level this would mean using IP SEC [1] to authen-
ticate on a per-packet basis. This would involve special client
software.

A second way to avoid hardware spoofing attacks would be
to use special network hardware such as certain VLAN switches
that enable and disable ports as hosts that are connected to them
are authenticated. This solution, however, is expensive and pre-
cludes the use of SPINACH on a wireless LAN. We discuss this
further in the Related Work Section.

VI. PRELIMINARY EXPERIENCE

The SPINACH system has been up and running since Septem-
ber of 1998. We have set up the SPINACH service on both the
public Ethernet ports and on a Lucent WaveLan [3] network in-
stalled in the Computer Science Building.

The SPINACH system maintains a log of all users of the sys-
tem. This log is useful not only for security purposes, but also
serves as an indicator of when and how often the system is be-
ing used. In the log we record the IP address of the user’s host,
the time network access is initiated, the time network access is
revoked, etc. Note that we warn users of the collection of this
information on the SPINACH web page.

Figure 4 shows the usage of the SPINACH system from
September 20 through November of 1998. Until now, SPINACH
has had a total of 935 user sessions or a median of 12 user ses-
sions per day. As one might expect, usage of the SPINACH sys-
tem is heavier during weekdays than weekends. The SPINACH
system is used more heavily on the WaveLan network than

0

5

10

15

20

25

30

35

Oct 1 Nov 1 Dec 1Oct 15 Nov 15Sep 20

N
um

be
r

of
 U

se
r

S
es

si
on

s
pe

r
D

ay

Fig. 4. Usage Statistics for SPINACH

through the Ethernet ports. This is also to be expected since
the WaveLan network gives users the freedom to move about
the building while they work.

We are pleased to find that the administrative effort involved
in setting up and maintaining SPINACH on both network types
is indeed minimal. After launching the service the system has
averaged only one to two cases where users needed help per
month.

VII. RELATED WORK

We have benefited greatly from work on the previous ver-
sion of SPINACH [15]. The first version of SPINACH had the
same general goal as the current version, that of securely grant-
ing network access to authenticated users through the public
ports in our building. It enabled both on-campus users as well
as guest users to obtain network access. On-campus users are
people who have entries within the campus Kerberos database.
Guest users are visitors to the Computer Science Department
who need access to the Internet. Without the SPINACH service,
visitors desiring to check their e-mail or perform other network-
dependent activities would informally borrow the offices and
desktops of building residents. Users used a telnet-based inter-
face to connect to the SPINACH router. Stanford-affiliated users
would enter their Kerberos password which would be checked
against the campus Kerberos database. Guest users would en-
ter a one-time password obtained from a system administrator
which would be checked against a database stored locally on the
SPINACH router.

Although the telnet-based version of SPINACH achieved the
goal of secure network access through public ports, there were
two aspects that needed to be improved. To use the SPINACH
service as a Stanford affiliate, users were required to carry tel-
net clients with support for Kerberos. This meant that Stanford
users who did not have Kerberos support on their laptops could
only use the SPINACH service as guests. This was particularly
inconvenient for users who wanted to use the public ports ev-
ery day and who were already in the campus Kerberos database.
This was also inconvenient for system administrators who had
to generate one-time passwords each time a user desired access
as a guest. Our current version of SPINACH requires only a
web browser on the client. This makes the SPINACH service
convenient to use, even for Stanford affiliates who do not have

Kerberos support on their laptops. Also, the telnet-based in-
terface used by the previous version was not user-friendly. We
have solved this problem by implementing a web-based inter-
face, with which virtually all computer users are familiar.

To our knowledge, there are three other designs that propose
solutions to the problem of secure access control for public net-
work ports. These are the NetBar system at Carnegie Mellon
and two designs by UC Berkeley and University of Michigan.

Carnegie Mellon’s Netbar system [14] uses a Cisco Cata-
lyst VLAN switch to isolate all the public ports on a “non-
connected” VLAN with limited connectivity that is used only
during the authentication process. When clients attach to a pub-
lic port, they receive an IP address from a DHCP server run-
ning on the ”non-connected” VLAN. Users must then authenti-
cate themselves to a server on the VLAN using their Kerberos
password. Once authentication is complete, the server sends
an SNMP message to the VLAN switch signaling it to move
the port to an “attached” network with full connectivity. When
clients disconnect from a port (link status drops), the VLAN
switch moves the port back to the “non-connected” VLAN.

NetBar is a much more expensive solution than SPINACH,
because it requires the use of a special brand of VLAN switch.
Many existing Ethernet installations do not use VLAN switches,
and retrofitting a building or college campus to use VLAN
switches would be time-consuming and costly.

Furthermore, the NetBar solution guards against many but
not all attempts at hardware address spoofing. A malicious user
could place a hub between the public port and the VLAN switch.
Users would unwittingly connect to the public port and authenti-
cate themselves to gain network access. When they disconnect,
the hub would prevent the VLAN from detecting the link status
drop, thus enabling the malicious user to spoof the host’s hard-
ware address and gain connectivity. In our opinion, the sub-
stantial cost of the special VLAN hardware is not justified by
the small amount of extra security it gains over SPINACH. With
SPINACH, we want to achieve the most security possible at a
low cost with minimal hardware and software requirements.

UC Berkeley has proposed a design [18] that requires both
special software on the client and special hardware. In partic-
ular, this design requires the use of an enhanced DHCP client,
an intelligent hub that supports disabling and enabling of in-
dividual ports, and a DHCP server that has been modified to
hand out configuration information only to clients that have
gone through an authentication process. To support all possi-
ble client platforms, administrators would need to support mul-
tiple versions of the enhanced DHCP client software. Given the
ever-increasing workload of administrators, this is not a realis-
tic suggestion. Disabling and enabling network ports is more
secure than hardware address filtering, but requires manufactur-
ers to design hubs that specifically handle this. Negotiating with
manufacturers could be difficult if not impossible, which fur-
ther makes the Berkeley design difficult to deploy in a variety of
environments.

Peter Honeyman at the University of Michigan has also pro-
posed a design called InSite [11] that addresses network access
control through public ports. This design requires the use of
NetBar VLANs and custom software on the client, thereby mak-
ing it vulnerable to the same kinds of deployment problems that

we described for the CMU and Berkeley designs.
We prefer SPINACH to the CMU, Berkeley, and University

of Michigan designs, because it is user-friendly, does not require
any expensive hardware or special client software, and provides
a good measure of security for the cost and administrative ef-
fort required to keep it running. Moreover, unlike these other
designs, SPINACH is modular, enabling us to plug in a different
access verification scheme easily, should the need for a higher
level of security arise. This enables SPINACH to satisfy an or-
ganization’s security needs as they evolve over time. Finally,
SPINACH is designed to run on a variety of networks, includ-
ing wireless LANs and WANs as long as these have the notion
of a hardware address. Wireless LANs that behave similarly
to wired Ethernet (e.g. Lucent’s WaveLan) can use SPINACH
without any modification. The other designs are rigid in this
respect, because they are tied to special hardware.

VIII. FUTURE WORK

A. Guest Users

We plan to add support to SPINACH for temporary, guest
users. We envision faculty and staff members using a web-
based interface to generate one-time passwords for their visitors.
This is slightly different from the previous version of SPINACH
which required a small number of system administrators to tel-
net into the SPINACH machine to generate one-time passwords
for all guests. We want to minimize the administrative effort re-
quired to maintain and deliver the SPINACH service. We can
achieve this by distributing the load and by placing building
residents in charge of enabling the SPINACH service for their
guests.

B. Authorization

We plan to extend the authorization module so that it differ-
entiates between groups of users. For example, we may want
to allow all authenticated Computer Science graduate students
to have access, but to disallow all Humanities undergraduates
from obtaining access. This introduces several challenges.

As the user base of SPINACH constantly changes, it is impos-
sible for us to maintain a list of people who fulfill the specified
criteria and should be granted access. Instead, the SPINACH
Authorization server must retrieve the information about the
user (e.g. what his major or status is) in real-time from the Stan-
ford directory service. Once the information has been retrieved,
a set of rules are applied to it and the decision to grant access is
made.

The problem with this scheme is that users will not want all
of their private information to be publicly available, but might
agree to allow the authorization module to obtain a subset of this
information to make its decision. A user might allow a specific
(but not any) SPINACH router to know he is living in a certain
student residence, but might choose to keep this information hid-
den from the public. How to give the user fine grain control over
such information is still an open research issue. The upcoming
P3P standard [13] is a promising first step towards privacy con-
trol. The proposed standards for authenticated LDAP [10] or
LDAP over SSL address how requests for this type of informa-
tion can be handled in a secure way.

The rules to perform the authorization check can be per-
formed in a number of ways. For most applications, simple pat-
tern matching on the attributes returned from the organization’s
database server should be sufficient.

C. Authentication

We also envision adding more authentication policies. We
will extend SPINACH so that it allows users to be authenticated
with authentication modules of other institutions. For example,
SPINACH could support users authenticated with the Carnegie
Mellon security infrastructure, in addition to the Stanford Ker-
beros infrastructure.

IX. CONCLUSIONS

We are facing a trend towards ubiquitous connectivity. As
part of the MosquitoNet project [4], [5], [12], we believe in en-
abling ubiquitous connectivity, that is connectivity that can be
achieved “anytime, anywhere.” Users will want to have network
access regardless of whether they are in their offices, in pub-
lic building spaces, or in open spaces outside. The problem of
network access control through public ports will become more
prevalent as institutions construct new buildings or retrofit ex-
isting ones to reflect this trend.

Current solutions to the problem of secure network access
through public ports present a wide range of obstacles: they
are expensive; they require constant administration; they require
special hardware or custom client software; or they are not user-
friendly. Although SPINACH is not as secure as some other
systems, it is low-cost, low-maintenance, and scalable. It is
user-friendly, providing a web-based interface, and it requires
no special hardware or custom client software. These features
make SPINACH a viable solution for use in a variety of environ-
ments, such as public schools, libraries, and universities, where
reasonably secure network access is desired, but keeping cost
and maintenance effort at a minimum is essential.

X. ACKNOWLEDGMENTS

We would like to acknowledge the help of several people
who made SPINACH possible. Dan Boneh gave valuable in-
put on the security aspects of SPINACH. Elliot Poger and Stu-
art Cheshire provided the original SPINACH idea and Elliot de-
signed and implemented the first prototype. Brian Roberts was
of great help setting up the system in our building. Finally we
would like to thank Jeff Lewis and Tim Torgenrud for their sup-
port in integrating SPINACH with WebLogin, and Jeff Hodges
for his advice on the LDAP infrastructure and future directions.

This research has been supported by a gift from NTT Mo-
bile Communications Network, Inc. (NTT DoCoMo), a grant
from the Keio Research Institute at SFC, Keio University and the
Information-technology Promotion Agency in Japan, as well as
a Sloan Foundation Faculty Fellowship and a National Science
Foundation Graduate Fellowship.

REFERENCES

[1] Ip security protocol. http://www.ietf.org/html.charters/ipsec-charter.html.
[2] Stanford university web authentication. https://weblogin.stanford.edu/.
[3] Wavelan, by lucent technologies, inc. http://www.wavelan.com/.

[4] Mary G. Baker, Xinhua Zhao, Stuart Cheshire, and Jonathan Stone. Sup-
porting mobility in mosquitonet. In Proceedings of the 1996 USENIX
Technical Conference, January 1996.

[5] Stuart Cheshire and Mary Baker. Internet mobility 4x4. In Proceedings of
SIGCOMM’96, August 1996.

[6] Dorothy Denning. Cryptography and Data Security. Addison-Wesley
Publishing, Inc., 1982.

[7] Ralph Droms. Dynamic host configuration protocol - rfc2131, 1997.
ftp://ftp.isi.edu/in-notes/rfc2131.txt.

[8] Taher Elgamal, Sean Cotter, and the Netscape Security Team.
Netscape security: Open-standard solutions for the enterprise, 1998.
http://developer.netscape.com/docs/manuals/security/scwp/.

[9] Neil M. Haller. The s/key one-time password system. In
The Internet Society’s 4th Annual Networking Conference, 1994.
ftp://ftp.bellcore.com/pub/nmh/docs/ISOC.symp.ps.

[10] Jeff Hodges. Lightweight directory access protocol (v3), extension for
transport layer security, 1997. Work in Progress, IETF: draft-ietf-asid-
ldapv3-tls-02.tx.

[11] Peter Honeyman. Workstation authorization. USITS conference, Work in
Progress Report, See http://www.citi.umich.edu/ u/ honey/ ppt/ insite/ in-
dex.htm, 1997.

[12] Kevin Lai, Mema Roussopoulos, Diane Tang, Xinhua Zhao, and Mary
Baker. Experiences with a mobile testbed. In Proceedings of the Second
International Conference on Worldwide Computing and its Applications,
March 1998.

[13] Steve Lucas, Joseph Reagle, et al. Platform for privacy preferences, the
p3p project, 1998. http://www.w3.org/P3P.

[14] Erikas Napjus. Netbar: Carnegie mellon access for mobile machines.
http://www.net.cmu.edu/design/netbar.html.

[15] Elliot Poger and Mary Baker. Secure public internet access handler
(spinach). In Proceedings of the USENIX Symposium on Internet Tech-
nologies and Systems, 1997.

[16] J.G. Steiner, C. Neuman, and J.I. Schiller. Kerberos: An authentication
service for open network systems. In USENIX Winter Conference Pro-
ceedings, 1988.

[17] Dwayne Virnau. Stanford distributed computing consulting, 1998.
http://dcc.stanford.edu/.

[18] D. L. Wasley. Authenticating aperiodic connections to the campus net-
work. ConneXions, Volume 10, No. 8, pp 20-26, 1996.

